Optimal Prandtl number for heat transfer in rotating Rayleigh–Bénard convection
نویسندگان
چکیده
Numerical data for the heat transfer as a function of the Prandtl (Pr) and Rossby (Ro) numbers in turbulent rotating Rayleigh–Bénard convection are presented for Rayleigh number Ra = 108. When Ro is fixed, the heat transfer enhancement with respect to the non-rotating value shows a maximum as a function of Pr. This maximum is due to the reduced effect of Ekman pumping when Pr becomes too small or too large. When Pr becomes small, i.e. for large thermal diffusivity, the heat that is carried by the vertical vortices spreads out in the middle of the cell and Ekman pumping thus becomes less effective. For higher Pr the thermal boundary layers (BLs) are thinner than the kinetic BLs and therefore the Ekman vortices do not reach the thermal BL. This means that the fluid that is sucked into the vertical vortices is colder than that for lower Pr, which limits the upwards heat transfer. Turbulent Rayleigh–Bénard (RB) convection, i.e. the flow of a fluid between two parallel plates heated from below and cooled from above, is the paradigmatic system for thermally driven turbulence in a confined space. Considerable progress in understanding the flow dependencies has been achieved in the last two decades, as reviewed in [1, 2]. Here we study the case where the sample is rotated around the vertical axis at an angular velocity, �. That system is relevant 4 Author to whom any correspondence should be addressed. New Journal of Physics 12 (2010) 075005 1367-2630/10/075005+08$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
منابع مشابه
Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection.
Experimental and numerical data for the heat transfer as a function of the Rayleigh, Prandtl, and Rossby numbers in turbulent rotating Rayleigh-Bénard convection are presented. For relatively small Ra approximately 10(8) and large Pr modest rotation can enhance the heat transfer by up to 30%. At larger Ra there is less heat-transfer enhancement, and at small Pr less, similar 0.7 there is no hea...
متن کاملNumerical Study of Mixed Convection of Nanofluid in a Concentric Annulus with Rotating Inner Cylinder
In this work, the steady and laminar mixed convection of nanofluid in horizontal concentric annulus withrotating inner cylinder is investigated numerically. The inner and outer cylinders are kept at constanttemperature Ti and To respectively, where Ti>To. The annular space is filled with Alumina-water nanofluid.The governing equations with the corresponded boundary conditions in the polar coord...
متن کاملDirect numerical simulation of Nusselt number scaling in rotating Rayleigh-Bénard convection
We report results from Direct Numerical Simulation (DNS) of rotating Rayleigh-Bénard convection, regarding the scaling of heat transfer with the Rayleigh number for rotating systems at a fixed rate of rotation. The Prandtl number, Pr = 6.4, is kept constant. We perform simulations, using a spectral element method, for Rayleigh numbers Ra from 10 to 10, and Rossby numbers Ro from 0.09 to∞. We fi...
متن کاملNatural Convection at Different Prandtl Numbers in Rectangular Cavities with a Fin on the Cold Wall
The natural convection in differentially heated rectangular cavities with a fin attached to the cold wall was investigated numerically. The top and the bottom horizontal walls of the cavities were insulated while their left and the right vertical walls were maintained at a constant temperature Th and Tc, respectively with Th > Tc. The governing equations written in terms of the primitive variab...
متن کاملHeat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinetic boundary layers scale with Ra and Pr. Non-Oberbeck-Boussinesq effects and the dynamics of the ...
متن کامل